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Technical 
Information

Low Voltage/Low Resistance 
Measurements

How to Select a Voltmeter 
Many kinds of instruments can measure voltage, 
including digital multimeters (DMMs), electrometers, 
and nanovoltmeters. Making voltage measurements 
successfully requires a voltmeter with significantly 
higher input impedance than the internal impedance 
(source impedance) of the device under test (DUT). 
Without it, the voltmeter will measure less potential 
difference than existed before the voltmeter was 
connected. Electrometers have very high input impe-
dance (typically in the order of 100TΩ [1014Ω]), so 
they’re the instrument of choice for high impedance 
voltage measurements. DMMs and nanovoltmeters 
can typically be used for measuring voltages from 
10MΩ sources or lower. Nanovoltmeters are appro-
priate for measuring low voltages (microvolts or less) 
from low impedance sources. 

Low Voltage Measurements
Significant errors may be introduced into low 
voltage measurements by offset voltage and 
noise sources that can normally be ignored when 
measuring higher signal levels. Steady offsets can 
generally be nulled out by shorting the ends of the 
test leads together, then enabling the instrument’s 
zero (relative) feature. The following paragraphs 
discuss non-steady types of error sources that can 
affect low voltage measurement accuracy and how to 
minimize their impact on the measurements. 

Thermoelectric EMFs
The most common sources of error in low voltage 
measurements are thermoelectric voltages (thermo-
electric EMFs) generated by temperature differences 
between junctions of conductors (Figure 1).
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Figure 1. Thermoelectric EMFs

Constructing circuits using the same material for all 
conductors minimizes thermoelectric EMF genera-
tion. For example, connections made by crimping 
copper sleeves or lugs on copper wires results in 
cold-welded copper-to-copper junctions, which 
generate minimal thermoelectric EMFs. Also, con-
nections must be kept clean and free of oxides.
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Figure 2a. Multiple grounds (ground loops)
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Input voltage to the nanovoltmeter is:
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Figure 2b. Single system ground

Minimizing temperature gradients within the 
circuit also reduces thermoelectric EMFs. A way to 
minimize such gradients is to place all junctions in 
close proximity and provide good thermal coupling 
to a common, massive heat sink. If this is impracti-
cal, thermally  couple each pair of corresponding 
junctions of dissimilar materials to minimize their 
temperature differentials which will also help 
minimize the thermoelectric EMFs.
Johnson Noise
The ultimate limit to how well the voltmeter can 
resolve a voltage is defined by Johnson (thermal) 
noise. This noise is the voltage associated with the 
motion of electrons due to their thermal energy. 
All sources of voltage will have internal resistance 
and thus produce Johnson noise. The noise voltage 
developed by any resistance can be calculated from 
t he following equation:

V = 4kTBR

k = Boltzmann’s constant (1.38 × 10–23 J/K)
T = absolute temperature of the source in Kelvin
B = noise bandwidth in Hz
R = resistance of the source in ohms

From this equation, it can be observed that 
Johnson noise may be reduced by lowering the 
temperature and by decreasing the bandwidth of 
the measurement. Decreasing the bandwidth of 
the measurement is equivalent to increasing the 
response time of the instrument; thus, in addition  
to increasing filtering, the bandwidth can be reduced 
by increasing instrument integration (typically in  
multiples of power line cycles).
Ground Loops
When both the signal source and the measurement 
instrument are connected to a common ground bus, 
a ground loop is created ( Figure 2a). This is the case 
when, for instance, a number of instruments are 
plugged into power strips on different instrument 
racks. Frequently, there is a difference in potential 
between the ground points. This potential differ-
ence—even though it may be small—can cause large 
currents to circulate and create unexpected voltage 
drops. The cure for ground loops is to ground the 
entire measurement circuit at only one point. The 
 easiest way to accomplish this is to isolate the DUT 
(source) and find a single, good earth-ground point 
for the measuring system, as shown in Figure 2b 
Avoid grounding sensitive measurement circuits to 
the same ground system used by other instruments, 
machinery, or other high power equipment. 

Magnetic Fields
Magnetic fields generate spurious voltages in two 
circumstances: 1) if the field is changing with time, 
and 2) if there is relative motion between the circuit 
and the field (Figure 3a). Changing magnetic fields 
can be generated from the motion of a conductor 
in a magnetic field, from local AC currents caused 
by components in the test system, or from the 
deliberate ramping of the magnetic field, such as for 
magnetoresistance measurements.

Voltmeter

b.

a.

Voltmeter

Area A (enclosed)

The voltage developed due to a field passing
through a circuit enclosing a prescribed area is:

B

VB  =
dφ
dt

d (BA)
dt

dA
dt

dB
dt

= =  B +  A

DUT

DUT

Figure 3. Minimizing interference from 
 magnetic fields with twisted leads 

To minimize induced magnetic voltages, leads must 
be run close together and should be tied down to 
minimize movement. Twisted pair cabling reduces 
the effects of magnetic fields in two ways: first, it 
reduces the loop area through which the magnetic 
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