Tektronix[®]

Arbitrary Waveform Generators AWG70000B Series

The AWG70000B Series arbitrary waveform generators (AWG) represent the cutting edge for sample rate, signal fidelity, and waveform memory, making them ideal for design, testing, and operations of complex components, systems and experiments. With up to 50 GS/s and 10-bit vertical resolution, it delivers the industry's best signal stimulus solution for easy generation of ideal, distorted, and "real-life" signals.

Key performance specifications

- Sample rates up to 50 GS/s
- -80 dBc spurious free dynamic range
- 10 bits vertical resolution
- Waveform memory of up to 32 GSamples

Key features

- Complete solution for wideband RF signal generation in a single box
 - Direct generation of wideband signals with carriers up to 20 GHz, removing the need for external RF conversion
- Simulate real-world analog effects on high speed digital data streams
 Model signal impairments up to speeds of 12.5 GB/s
- Generate high precision RF signals
 - Spurious Free Dynamic Range performance better than -80 dBc
- Create high speed baseband signals for optical transmission with the vertical resolution to handle higher order complex modulation
 - 10 bits of vertical resolution at a sample rate of 50 GS/s
- Create long waveforms scenarios without building complex sequences
 - Up to 32 GSamples of Waveform Memory plays 640 ms of data at 50 GS/s

- Synchronize multiple units (manually or with the AWG Synchronization Hub) to achieve a multi-channel high speed AWG system
- Fully operational without external PC
 - Built-in display and buttons make it possible to quickly select, edit and play waveforms directly from the front panel of the AWG
- Simulate real-world environments by playing back captured signals
 - Waveforms captured with Oscilloscopes or Real-Time Spectrum Analyzers can be played back, edited or re-sampled on the AWG
- Smooth transition from simulation to the real-world testing environment
 Waveform vectors imported from third-party tools such as MATLAB
- Sequencer with Streaming ID
 - Control the Sequencer directly via a network interface connection

Applications

- Wideband RF/MW for communications and defense electronics
 - Output wideband RF signals up to 20 GHz
- Validation and compliance testing of high speed silicon and communications devices
 - o Easily stress test receivers with a wide array of signal impairments
- Coherent optical research
 - Generation of high Baud rate baseband signals with higher order, complex modulation
- Leading edge research in electronics, physics & chemistry
 - High speed, low jitter signal source generates uniquely specified analog signals, fast pulses, data streams and clocks

Performance you can count on

Depend on Tektronix to provide you with performance you can count on. In addition to industry-leading service and support, this product comes backed by a standard one-year warranty.

Seamless transition from simulation to generation

If a waveform can be defined or captured, then the AWG70000B can generate the signal. The creation of the waveform can happen in many ways. Waveform creation plug-ins, which are optimized to work specifically the Tektronix AWG family, provide specific waveform creation capabilities, while 3rd party solutions like MATLAB, Excel, or others, have the flexibility to create any waveform you desire. Waveforms created in any of these packages can be imported and played back in the AWG70000B, seamlessly transitioning from the simulation world to the real world.

Additionally, any signals captured on Tektronix oscilloscopes or Real-Time Spectrum analyzers can be loaded into the AWG70000B and played back. With the use of the built in waveform generation plug-ins, the captured signal can also be modified or changed to meet any specific requirements that may exist.

Wideband RF signal generation

RF signals are becoming more and more complex, making it more difficult to accurately create the signals required for the testing and characterization of RF systems. To address these challenges, RF Generic delivers advanced capabilities to synthesize digitally modulated baseband, IF and RF/microwave signals supporting a wide range of modulation schemes.

The RF Generic, Radar, Multitone, OFDM, and Environment plug-in's easy to use graphical user interfaces integrate seamlessly with the AWG70000B Series user interface or the SourceXpress remote PC application.

File	ile Connectivity Tools Windows Help							
ð]			Stopped			
5	Home	Setup Waveform	Plug-ins Sequence Ed	itor Capture/Playbac	k Precompensation			
lavefo	Plug-ir	n: RF Generic Signal	-		Compile of	3		Reset Plug-in Help +
rms	Signal	Format RE/IE -				<u>.</u>		
Seq								
oner	Carrie	Sub Carrier Mod	ulation S-Param	eter 🙂				
S	Index	Frequency	Amplitude	Phase	Carrier Type			
Conr	2	1 GHZ	-0.24 dbm		Analog Modulation			
lecti	2	1 GHz	-6.24 dBm		Custom Modulation			
vity	-	1 GHz	-6.24 dBm		Digital Modulation			
	-	1 GHZ	-0.24 dBm	0.	Noise			
	Ľ	1 GHz	-3.24 dbm	13.5 *	Digital Modulation			
	-							
	Add	Carrier Add Multip	ole Carriers					
		P Hopping O IO	Q Impairments P	ower Ramp 🔍 Inte	rference Addition 😏 Dis	tortion	MultiPath 🔍	
	Carrier Type Digital Modulation V Frequency 1 GHz							
	Amplitude -3.24 dBm Phase 13.5 *							
	Data							
	Pattern PPRS 7							
	Patern PRBS /							
		ing Gray						
	Digit	tal Modulation						
		dulation 128 QAM						
	Sym	bol Rate 10 MHz						
		·						
		r Ra	ised Cosine 🛛 👻					
								• •
								• •
		volution Length 21	Symbol					
_	-				Sampla Pater 5 GS/			

The AWG70000B with the RF Generic Plugin allows complex RF Waveform Generation

The latest digital RF technologies often exceed the capabilities of other test instruments because of the need to generate the wide-bandwidth and fastchanging signals that are increasingly seen in many RF applications such as Radar, RF communications, OFDM, and Multi-tone. When used in conjunction with the specific plugin, the AWG70000B Series supports a wide range of modulation formats and simplifies the task of creating complex RF waveforms. The AWG70000B Series instruments provide customers with ways to generate fully modulated baseband, intermediate frequency (IF) signals, or directly generated RF waveforms up to 20 GHz.

3 GHz wide multi-carrier signal generated on the AWG70000B with over 60 dBC SFDR

Radar signal creation

Generating advanced radar signals often demands exceptional performance from an AWG in terms of sample rate, dynamic range, and memory. The Tektronix AWG70000B Series sets a new industry standard for advanced radar signal generation, by delivering wide modulation bandwidths up to 20 GHz. With a sample rate of up to 50 GS/s, the AWG70000B Series can directly generate RF signals never before possible from an AWG. In instances where IQ generation is desired, the AWG70000B offers the ability to oversample the signal, thereby improving signal quality with its outstanding SFDR performance.

The AWG70000B and the Radar plug-in are the perfect solution for creating complex radar signals. Users get the ultimate flexibility in creating custom radar pulse suites. Modulation types such as LFM, Barker and Polyphase Codes, Step FM, and Nonlinear FM are easily created using the AWG, and the flexibility of the plug-in enables the creation of waveforms requiring customer-defined modulation. The combination AWG and Radar plug-in solution also has the ability to generate pulse trains with staggered PRI to resolve range and doppler ambiguity, frequency hopping for Electronic Counter-Counter Measures (ECCM), and pulse-to-pulse amplitude variation to simulate Swerling target models including antenna scan patterns, clutter, and multipath effects.

File	Connectivity Tools	Windows H	elp						
Ê					Stopped				
W.	Home Setup Wave	form Plug-ins	Sequence Editor Capt	ure/Playback	Precompensation				
avefore	Plug-in: Radar	•			Compile	2		Reset	Plug-in Help 🔻
S Su	Signal Format RF/IF	•							
Induce	Pulse Train S-Parar	meters 🔵							
8									
Conn	PulseTrain_1	Magnitude	(Peak) 0 dBm		1 GHz	hase Offset 0 *			
ectivit									
~		Index	Туре	Repeat	Start Time	PRI	On Time	Duration	
		1	Pulse Group		0 s	115 us	40 us	115 us	
		2							
	Pulse Envel	ope	Modulation		Offsets 🔘	Staggered	PRI 🔘	Pulse Impairm	ents 🔍
	IQ Impairm	ents 🔘	MultiPath (D	Interference Addi	tion 🔍	Hopping 🔘	Ant	nna 🥥
						Anter	nna Beam Profile (S	can area is 360°)	
					10.00				
	scan type	Circular	Target Locatio						
		L778657 Mdeg/	s Horizontal	180 *	10.00				
	Scan Area	004 SASSSS *	Vertical	0.	-10.00				
								<mark>- 1</mark> - 2 - 2	
	Update Repe	at for Full Scan			면 광 -30.00		الس.		
					blite		ALC: NO.	and the second second	
		Sin(x) / x			₽ -40.00	ANALY STREET,			A DESCRIPTION OF
	Beam Width (3 dB)				-50.00				
	Azimuth 4				-60.00				
					-70.00				
	Elevation 1					0.00 s 40.48 us	80.96 us	121.44 us 161.9	2 us

AWG radar pulses created with AWG70000B and Radar plug-in

Environment signal generation

The mission-critical nature of many radar signals requires that they coexist with standards-based commercial signals sharing the same spectrum without performance degradation. To meet this expectation, a radar designer has to thoroughly test all the corner cases at the design/debug stage. The AWG70000B and the Environment plug-in offers extreme flexibility to define and create these worst-case scenarios.

You can specify up to 50 scenarios to define your environment, including WiMAX, WiFi, GSM, CDMA, W-CDMA, DVB-T, Noise, Bluetooth, LTE, OFDM, Radar and more. This plug-in also allows you to seamlessly import signals from other plug-ins (including Radar, RF Generic etc.), as well as from Matlab[®] and from Tektronix spectrum analyzers and oscilloscopes, into your environment. You can also configure PHY parameters of your standard-specific signals. You can define the carrier frequency, power, start time, and duration for all the signals in your environment, so you have full control over the way these signals interact/interfere with each other.

Multiple scenarios with multiple emitters using the Environment plug-in

Coherent optical

Today's high speed and increasingly web driven world is pushing the demand for short and long haul coherent optical development. Phase modulation, high baud rate, high sample rate, bandwidth and resolution are all critical to optical applications. Tektronix understands the challenges and inconsistencies of coherent optical testing and offers a reliable, easy to set up and high performing tool set for optical testing, waveform generation and calibration.

The Tektronix AWG70000B Series Arbitrary Waveform Generator (AWG) can reach sampling rates as high as 50 GS/s with 10 bits vertical resolution. Such level of performance allows for the direct generation of IQ basebands signals required by modern coherent optical communication systems based on quadrature modulation of an optical carrier with data rates well over 200Gb/s. Multiple AWG70000Bs can be synchronized (manually or with the AWG Synchronization Hub) to use the max 50 GS/s on each baseband signal with low EVM and 32 Gbaud performance.

Generating the desired signal is only the first challenge in coherent optical. The quality of the signal, low EVM's and having a clear open eye is crucial. The Optical plug-in, in conjunction with the pre-compensation plug-in, can be used for calibration of the AWG to the device under test and for precompensation of coherent optical signals.

File Connectivity Tools Windows Help	
Stopped	
Home Setup Waveform Plug-ins Sequence Editor Capture/Playback Precompensation	
Plug-in: Optical -	Reset Plug-in Help
Setup IQ Impairments S-Parameter	
Mode Dual Polarization (X & Y) 💌	
Baud Rate 1 GHz	
X Baseband Offset 0 Hz	
Y Baseband Offset 0 Hz	
Modulation	
Predefined Modulation Custom Modulation	
128 QAM -	
Filter	
Type Raised Cosine Alpha/8*T 0.35	• • • • • • •
	• • • • • • • • • • • • •
Convolution Length 21 Symbol	• • • • • • • • • • • • •
X Data Source	••••••
Single data source O Data source for each bit	
Pattern PRBS 7 👻	
Y Data Source	
Single data source O Data source for each bit	
Pattern User Defined PRBS -	
Sample Rate: 5 GS/s	

Generic OFDM creation

In today's wireless world, OFDM is becoming the modulation method of choice for transmitting large amounts of digital data over short and medium distances. The need for wide bandwidths and multiple carriers create challenges for engineers who need to create OFDM signals to test their RF receivers. The AWG70000B Series, when coupled with the OFDM plug-in, allows users to configure every part of the OFDM signal definition. Engineers can build signals symbol-by-symbol to create a complete OFDM frame or let the plug-in choose default values for some signal aspects. The combined AWG and OFDM plug-in supports a variety of data coding formats that include Reed Solomon, Convolution, and Scrambling. Users also have the ability to define each subcarrier in the symbol which can be configured independently for type, modulation, and base data. The OFDM plug-in gives visibility into all aspects of the OFDM signal by providing a symbol table that gives a summary of all the carriers in the selected symbol. OFDM packets/ frames can be built by specifying the spacing between the symbols/frames and parts of the OFDM packets can be stressed by adding gated noise.

High-speed serial signal generation

Serial signals are made up entirely of binary data — simple ones and zeros. As clock rates have increased, these simple ones and zeros have begun to look more like analog waveforms because analog events are embedded in the digital data. The zero rise time and the perfectl flat tops of textbook digital signals no longer represent reality. Electronic environments have noise, jitter, crosstalk, distributed reactances, power supply variations, and other shortcomings. Each takes its toll on the signal. A real-world digital "square wave" rarely resembles its theoretical counterpart.

Since the AWG70000B Series is an analog waveform source, it is the perfect single-box solution used to create digital data streams and mimic the analog imperfections that occur in real-world environments. The use of direct synthesis techniques allow engineers to create signals that simulate the effects of propagation through a transmission line. Rise times, pulse shapes, delays, and aberrations can all be controlled. When used in conjunction with the High Speed Serial (HSS) plug-in, engineers are provided control over every aspect of their digital signals, reaching speeds of up to 50 Gb/s. This is exactly what is needed for rigorous receiver testing requirements.

Easily create digital data impairments with the AWG70000B and HSS plug-in

The HSS plug-in allows the AWG70000B Series instruments to create a variety of digital data impairments such as jitter (Random, Periodic, Sinusoidal), noise, pre/de-emphasis, duty cycle distortion, Inter-symbol Interference (ISI), Duty Cycle Distortion (DCD), and Spread Spectrum Clocking (SSC). The transmission environments of both boards and cables can be emulated using S-parameter files that can be applied to any waveform. The AWG70000B and the HSS plug-in also provides base pattern waveforms for many of today's high-speed serial applications such as SATA, Display Port, SAS, PCI-E, USB, and Fibre Channel.

For high-speed serial applications, the AWG70000B Series offers the industry's best solution for addressing challenging signal stimulus issues faced by digital designers who need to verify, characterize, and debug complex digital designs. The file-based architecture uses direct synthesis to create complex data streams and provides users with the simplicity, repeatability, and flexibility required to solve the toughest signal generation challenges in high-speed serial communication applications.

Digital data with de-emphasis added using the AWG70000B and the HSS plug-in

Create correction coefficients

Compensate for imperfections in your test setup introduced by cabling, passive and active RF components and devices to achieve a flat frequency and linear phase response from your AWG. The Precompensation plug-in for current Tektronix AWG instruments and the PC SourceXpress software allows users to compensate for the first and second Nyquist zones of the AWG. Users can define the LO frequency and choose to get correction coefficients for either lower side band or upper side band, as well as define the carrier frequency. In all the modes, users can define the bandwidth of compensation either by specifying start and end frequencies (RF & IF) or bandwidth (in IQ/IQ with modulator).

The AWG70000B with the Generic Precompensation plug-in

Streaming ID

Managing a dynamic reproduction of an RF test environment can sometimes mean keeping track of thousands of individual waveforms. The new Streaming Waveform ID (Streaming WID) option adds a dedicated ethernet port to the rear panel of the instrument. This port allows for direct access to the sequencer hardware via UDP-formatted packets enabling immediate access to over 16000 sequence steps available in system memory. Replicate the chaos of the real world with unprecedented accuracy and accomplish more in less time with Streaming WIDs.

Option AC

The AWG70001B, with Option AC, provides you with an additional high output amplitude connector. Option AC adds a single-ended AC coupled connector to the front panel of the single channel AWG70001B Arbitrary Waveform Generator. User controls are added to allow switching the output path between the standard Direct output connectors or the AC output connector. When switched to the AC path, additional user controlled amplification and attenuation is added to the signal path.

In AC output mode, you can chose one of the four signal filter paths and set the output amplitude, letting the instrument automatically set the step attenuators in the selected filter path. For greater control, you can manually set the attenuation of the step attenuators for your selected filter path.

- No filter: -70 to +25 dBm at 1 GHz CW calibration frequency
- 11.5 GHz Low Pass: -70 to +25 dBm at 1 GHz CW calibration frequency
- 10 GHz 14.5 GHz Band Pass: -77 to +18 dBm at 11 GHz CW calibration frequency
- 13 GHz 18 GHz Band Pass: -90 to +20 dBm at 14 GHz CW calibration frequency

LXI Class C

Using the LXI Web Interface, you can connect to the AWG70000B Series through a standard web browser by simply entering the AWG's IP address in the address bar of the browser. The web interface enables viewing of instrument status and configuration, as well as status and modification of network settings. All web interaction conforms to the LXI Class C specification.

Specifications

All specifications are typical unless noted otherwise. All specifications apply to all models unless noted otherwise.

Model overview

		AWG70001B	AWG70002B
Digi	tal to analog converter		
	Sample rate	1.5 kS/s - 50 GS/s	1.5 kS/s - 25 GS/s
	Resolution	10 bit (no markers selected), 9 bit (one marker	selected), or 8 bit (two markers selected)
Number of channels		1	2

Hardware characteristics

Run modes	
Continuous	Waveform is continuously repeated
Triggered	Waveform is output only once after a trigger is received
Triggered Continuous	Waveform is continuously repeated after a trigger is received
Waveform memory	
AWG70001B	Standard: up to 2 GSamples
	With extended memory: up to 32 GSamples
AWG70002B	Standard: up to 2 GSamples per channel
	With extended memory: up to 16 GSamples per channel
Minimum waveform length	
Triggered run modes	AWG70001B: 4800 points
	AWG70002B: 2400 points
Continuous run mode	1 point
Waveform granularity	
Continuous run mode	1 point
Triggered run modes	AWG70001B: 2 points
	AWG70002B: 1 point
Waveform interleaving	
AWG70001B	Non-interleaved when \leq 25GS/s
	Interleaved when > 25GS/s
AWG70002B	Non-interleaved at all sample rates
DAC Resolution	8-bit, 9-bit, or 10-bit

Analog output characteristics

Number of channels	
AWG70001B	1 channel
AWG70001B	2 channels
Connector type	Aeroflex/Weinschel Planar Crown Universal Connector System with SMA female adapter
Output impedance	50 Ω
Effective frequency output	Fmaximum (specified) is determined as "sample rate / oversampling rate" or "SR / 2.5".
AWG70001B	20 GHz
AWG70002B	10 GHz
Bandwidth	Measured with a multi-sine waveform with equal amplitude across the band. The Sin(x)/x response is mathematically removed from the measured response before recording the -3 dB crossing.
AWG70001B	15 GHz
AWG70002B	13.5 GHz
Output amplitude	Amplitude levels are measured between differential outputs (+) to (-). For single-ended output, the amplitude level will be one-half the specified voltage levels.
Range	500 mV _{p-p} to 1 V _{p-p}
Resolution	1.0 mV
Accuracy	±(2% of amplitude + 1 mV)
Rise/fall time	Rise/fall time measured at 20% to 80% levels, related by a factor of 0.75 to the industry standard of 10% to 90% levels.
AWG70001B	Sampling rate ≤ 25 GS/s: < 23 ps
	Sampling rate at 50 GS/s: < 27 ps
AWG70002B	< 22 ps
Serial data bit rate	Bit rate determined as "sample rate / 4 points per cycle", allowing full impairment generation.
AWG70001B	12.5 Gb/s
AWG70002B	6.25 Gb/s
Output flatness	
AWG70001B	±1.8 dB up to 10 GHz,
	+1.8 dB to -3 dB from 10 GHz to 15 GHz
AWG70002B	+0.8 dB to -1.5 dB up to 10 GHz
Output match, SWR	
AWG70001B	DC to 5 GHz = 1.32:1
	5 GHz to 10 GHz = 1.52:1
	10 GHz to 20 GHz = 1.73:1
AWG70002B	DC to 10 GHz = 1.61:1

Analog output characteristics

Frequency response

AWG70001B

AWG70001B frequency response at 50 GS/s with Sin(x)/x response mathematically removed from measured data.

AWG70002B

AWG70002B frequency response at 25 GS/s with Sin(x)/x response mathematically removed from measured data.

AWG70002B measured frequency response and ideal Sin(x)/x response at 25 GS/s.

Analog output characteristics

Waveform characteristics

Waveform file import capability	Import waveform format by series:
	AWGX file created by Tektronix AWG5200/70000 Series
	AWG file created by Tektronix AWG5000 or AWG7000 Series
	.PAT and *.WFM file formats created by Tektronix AWG400/500/600/700 Series
	.IQT file format created by Tektronix RSA3000 Series
	.TIQ file format created by Tektronix RSA6000/5000 Series or MDO4000 Series
	.WFM or *.ISF file formats created by Tektronix TDS/DPO/MSO/DSA Series
	.TXT file format
	.MAT Matlab file format
	.SEQX file format created by Tektronix AWG5200 Series
	.SEQ file format created by the Tektronix AWG400/500/600/700 Series
	.TMP or .PRM file formats; Midas Blue (Data Type 1000/1001; Scalar and complex data; 8-,16-, 32-, and 64-bit integer and 32- and 64-bit float data format types)
Waveform file export capability	
	.WFMX file format, AWG5200/70000 series native format
	.WFM file format, AWG400/500/600/700 waveform file
	.TIQ file format, RSA6000 IQ Pair
	.TXT file format

Trigger input characteristics

Number	2 (A and B)
Connector	SMA (rear panel)
Polarity	Positive or negative selectable
Impedance	50 Ω, 1 kΩ
Range	
50 Ω	<5 V
1 kΩ	±10 V
Threshold	
Range	-5.0 V to 5.0 V
Resolution	0.1 V
Accuracy	$\pm 5\%$ of the setting + 0.1 V
Trigger to output delay	
Asynchronous	(42,000/(2 * fclk) +20 ns) ±20 ns (1.700 μs @ fclk = 12.5 GHz, 25 GS/s)
Synchronous	(40,800/(2 * fclk) + 20 ns) ±20 ns (1.652 μs @ fclk = 12.5 GHz, 25 GSps)
where fclk is the frequency of the DAC sampling clock	
Trigger minimum pulse width	20 ns
Trigger hold-off	8320/fclk ±20 ns
	where fclk is the frequency of the DAC sampling clock

Sequencer The sequencer is a firmware upgrade that allows the user to run a sequence of waveforms. The sequencer runs independent channels except for the clock. Maximum repeat count 220 counts (1,048,576 counts) 16,383 Maximum sequencing steps Single level depth Subsequencing Waveform granularity resolution 2 AWG70001B AWG70002B 1 Minimum waveform length AWG70001B 4800 points AWG70002B 2400 points

Spurious Free Dynamic Range (SFDR)

Spurious free dynamic range (SFDR) characteristics

Frequency output of AWG ^{1 2}

AWG70001B operating at		In band performance		Adjacent band performance	
50 GS/s	Analog channel output frequency	Measured across	Specification	Measured across	Specification
	100 MHz	DC - 1 GHz	-80 dBc	DC - 10 GHz	-72 dBc
	DC - 500 MHz	DC - 500 MHz	-70 dBc	DC - 1.5 GHz	-66 dBc
	DC - 1 GHz	DC - 1 GHz	-63 dBc	DC - 3 GHz	-63 dBc
	DC - 2 GHz	DC - 2 GHz	-62 dBc	DC - 6 GHz	-60 dBc
	DC - 3 GHz	DC - 3 GHz	-60 dBc	DC - 6 GHz	-52 dBc
	DC - 5 GHz	DC - 5 GHz	-52 dBc	DC - 6 GHz	-52 dBc
	5 GHz - 6 GHz	5 GHz - 6 GHz	-52 dBc	3 GHz - 9 GHz	-40 dBc
	6 GHz - 7 GHz	6 GHz - 7 GHz	-42 dBc	4 GHz - 10 GHz	-42 dBc
	7 GHz - 8 GHz	7 GHz - 8 GHz	-60 dBc	6 GHz - 12.5 GHz	-52 dBc
	8 GHz - 10 GHz	8 GHz - 10 GHz	-50 dBc	6 GHz - 12.5 GHz	-52 dBc
	10 GHz - 12 GHz	10 GHz - 12 GHz	-53 dBc	6 GHz - 12.5 GHz	-50 dBc
	12 GHz - 13 GHz	12 GHz - 13 GHz	-22 dBc	10 GHz - 15 GHz	-22 dBc
	13 GHz - 14 GHz	13 GHz - 14 GHz	-54 dBc	11 GHz - 16 GHz	-20 dBc
	14 GHz - 16 GHz	14 GHz - 16 GHz	-46 dBc	13 GHz - 18 GHz	-38 dBc
	16 GHz - 18.5 GHz	16 GHz - 18.5 GHz	-42 dBc	14 GHz - 20 GHz	-30 dBc
	18.5 GHz - 20 GHz	18.5 GHz - 20 GHz	-28 dBc	16 GHz - 20 GHz	-24 dBc
AWG70001B and AWG70002B		In band performance		Adjacent band performance	
operating at 25 GS/s	Analog channel output frequency	Measured across	Specification	Measured across	Specification
	100 MHz	DC - 1 GHz	-80 dBc	DC - 10 GHz	-72 dBc
	0 - 500 MHz	DC - 500 MHz	-70 dBc	DC - 1.5 GHz	-66 dBc
	DC - 1 GHz	DC - 1 GHz	-63 dBc	DC - 3 GHz	-63 dBc
	DC - 2 GHz	DC - 2 GHz	-62 dBc	DC - 6 GHz	-60 dBc
	DC - 3 GHz	DC - 3 GHz	-60 dBc	DC - 6 GHz	-52 dBc
	DC - 5 GHz	DC - 5 GHz	-52 dBc	DC - 6 GHz	-52 dBc
	5 GHz - 6 GHz	5 GHz - 6 GHz	-52 dBc	3 GHz - 9 GHz	-40 dBc
	6 GHz - 7 GHz	6 GHz - 7 GHz	-42 dBc	4 GHz - 10 GHz	-42 dBc
	7 GHz - 8 GHz	7 GHz - 8 GHz	-55 dBc	6 GHz - 12.5 GHz	-50 dBc
	8 GHz - 10 GHz	8 GHz - 10 GHz	-50 dBc	6 GHz - 12.5 GHz	-50 dBc

¹ Measured with Balun at maximum sample rate.

² SFDR is determined as a function of the directly generated carrier frequency. Harmonics not included.

Output distortions

Harmonic distortion	Sample rate = 25 GS/s			
2nd harmonic, at output	Frequency range	Value		
frequency	< 2 GHz	< -60 dBc		
	2 GHz - 6 GHz	< -50 dBc		
	> 6 GHz	< -42 dBc		
3rd harmonic, at output	Frequency range	Value		
frequency	< 1 GHz	< -60 dBc		
	1 GHz - 2 GHz	< -50 dBc		
	> 2 GHz	< -40 dBc		

Effective number of bits (ENOB)

AWG70001B	4.6 bits at 14.99 GHz
	All noise and distortion DC - 20 GHz
AWG70002B	5.6 bits at 9.99 GHz
	All noise and distortion DC - 12.5 GHz

Phase noise

Phase noise in reduced jitter mode.

Jitter

Random jitter	250 fs RMS
Total jitter	10 ps _{p-p} at 12.5 Gb/s

Channel timing characteristics

	These specifications apply to the AWG70002B only.		
Channel to channel skew	±5 ps		
Output skew control			
Range	-100 ps to 100 ps		
Resolution	500 fs		
Accuracy	±5 ps		
Intra-channel skew	<5 ps		

References

Reference In			
Connector	SMA (rear panel)		
Impedance	50 Ω , AC coupled		
Input amplitude	–5 dBm to +5 dBm		
Fixed frequency range	10 MHz, ±40 Hz		
Variable frequency range	35 MHz to 240 MHz		
10MHz Reference Out			
Connector	SMA (rear panel)		
Impedance	50 Ω , AC coupled		
Amplitude	+4 dBm ±2 dBm		
Frequency (guaranteed)	10 MHz ±(1 ppm + aging)		

Clock characteristics

Clock In	
Connector	SMA (rear panel)
Input impedance	50 Ω, AC coupled
Frequency range	6.25 GHz to 12.5 GHz
Input amplitude	0 dBm to +10 dBm
Clock Out	
Connector	SMA (rear-panel)
Output impedance	50 Ω AC coupled
Output amplitude	+5 dBm to +10 dBm
Sync Clock Out	
Connector	SMA (rear panel)
Output impedance	50 Ω , AC coupled
Frequency	1/80 of the clock output
Amplitude	1.0 V ±150 mV $_{p\text{-}p}$ into 50 Ω

Marker characteristics

Number

AWG70001B	Total of 2	
AWG70002B	Total of 4 (2 per channel)	
Style	Differential	
Connector	SMA (front panel)	
Impedance	50 Ω	

Level into 50 Ω

Characteristic	Value
Window	-1.4 V to 1.4 V
Amplitude	0.5 V $_{\rm p-p}$ to 1.4 V $_{\rm p-p}$
Resolution	10 mV
Accuracy	\pm (10% of setting + 50 mV) into 50 Ω
Rise/fall time (20% - 80%)	<35 ps (High: 1.0 V, Low: 0 V)

Timing skew

Characteristic	Value
Intra-channel	<12 ps (between each channel (+) Pos and (-) Neg output)
Inter-channel	<15 ps (between Marker 1 and Marker 2 outputs)

Delay control

Characteristic	Value
Delay from analog output	AWG70001B: 180 ps ±25 ps AWG70002B: 755 ps ±25 ps
Range	0 to 100 ps
Resolution	1 ps
Accuracy	±15 ps

Jitter

Characteristic	Value
Random RMS	0.4 ps _{RMS}
Total p-p	20 ps _{p-p} (Using PRBS15 pattern)

Auxiliary Outputs

	Auxiliary Outputs can be configured as sequencer flags or timers.		
Connector	SMB (rear panel)		
Number of outputs			
AWG70001B	4		
AWG70002B	8		
Impedance	50 Ω		
Amplitude			
High	3.3 V into 50 Ω		
Low	0 V		
Period	When configured as a timer.		
	1 Hz (1 s) to 100 kHz (10 μs)		

Pattern jump

Pin assignments	Pin		Pin		Pin	
	1	GND	6	GND	11	Data bit 5, input
	2	Data bit 0, input	7	Strobe, input	12	Data bit 6, input
	3	Data bit 1, input	8	GND	13	Data bit 7, input
	4	Data bit 2, input	9	GND	14	GND
	5	Data bit 3, input	10	Data bit 4, input	15	GND
Input impedance	u t impedance 1 kΩ pull-down to GND					
Input levels	3.3 V LVCMOS					
	5 V TTL compliant					
Number of destinations	256					
Strobe polarity	Negative edge					
Strobe Minimum Pulse Width	64 ns					
Strobe Setup and Hold						
Setup	5 ns					
Hold	5 ns					

AWG70001B Option AC output characteristics

These characteristics apply to the optional AC output connector available with the AWG70001B models.

Connector	Aeroflex/Weinschel Planar Crown Universal Connector System with SMA female adapter			
Number of analog AC outputs	1			
Type of outputs	single ended			
Output impedance	50 Ω			
Frequency range	Filter	Value		
	No filter	10 MHz to 18 GHz		
	Low pass	10 MHz to 11.5 GHz		
	Band pass (10 to 14.5 GHz)	10 GHz to 14.5 GHz		
	Band pass (13 to 18 GHz)	14 GHz to 18 GHz		
Amplitude				
Range (for a CW signal at	Filter	Value		
specified frequencies in each path)	No filter	25 dBm to -70 dBm at 1 GHz 18 dBm to -77 dBm at 13 GHz		
	Low pass	25 dBm to -70 dBm at 1 GHz		
	Band pass (10 to 14.5 GHz)	18 dBm to -77 dBm at 11 GHz		
	Band pass (13 to 18 GHz)	20 dBm to -90 dBm at 14 GHz 18 dBm to -90 dBm at 18 GHz		
Accuracy (at calibration	Filter	Value		
frequency)	No filter	±0.5 dB at 1 GHz, ambient 16 °C to 26 °C ±1.5 dB at 1 GHz, ambient 0 °C to 50 °C		
	Low pass	±0.5 dB at 1 GHz, ambient 16 °C to 26 °C ±1.5 dB at 1 GHz, ambient 0 °C to 50 °C		
	Band pass (10 to 14.5 GHz)	±1.5 dB at 11 GHz, ambient 16 °C to 26 °C ±3.0 dB at 11 GHz, ambient 0 °C to 50 °C		
	Band pass (13 to 18 GHz)	±1.5 dB at 14 GHz, ambient 16 °C to 26 °C ±3.5 dB at 14 GHz, ambient 0 °C to 50 °C		
Resolution	0.01 dB			
Amplitude flatness	Amplitude flatness Specifications include the sin(x)/x roll off of the DAC at 50 GS/s.			
	Filter Value			

Filter	Value
No filter	± 3 dB, 10 MHz to 10 GHz ± 4 dB, 10 MH to 13 GHz
Low pass	± 3 dB, 10 MHz to 10 GHz
Band pass (10 to 14.5 GHz)	± 3.5 dB, 10 GHz to 14.5 GHz
Band pass (13 to 18 GHz)	± 4.5 dB from 13 GHz to 18 GHz

AWG70001B Option AC output characteristics

Harmonic distortion	Operating at 50 GS/s.		
2 nd Harmonic at output	Frequency range	Value	
frequency	< 1 GHz	< -34 dBc	
	1 GHz - 4 GHz	< -30 dBc	
	> 4 GHz	< -28 dBc	
3 rd Harmonic at output	Frequency range	Value	
frequency	< 1 GHz	< -50 dBc	
	1 GHz - 4 GHz	< -45 dBc	
	> 4 GHz	< -33 dBc	

Amplifier 1 dB compression

Operating at 50 GS/s

Filter	Frequency	Value
No filter	1 GHz	> 25 dBm
	13 GHz	> 22 dBm
Low pass	1 GHz	> 25 dBm
Band pass (10 to 14.5 GHz)	11 GHz	> 22 dBm
Band pass (13 to 18 GHz)	14 GHz	> 22 dBm
	18 GHz	> 20 dBm

Switching time

The time required for the attenuators and amplifiers to settle to the specified output amplitude after an amplitude change.

20 ms

Power source

AC line input	100 to 240 V AC, 50/60 Hz
Consumption	500 Watts

Computer system

Operating system / peripherals / IO	Microsoft Windows 10 operating system	
	16 GB	
	≥ 1 TB solid state drive	
	6 USB ports (2 front - USB 2.0) (4 rear - USB 3.0)	
	RJ-45 Ethernet connector (rear panel) supports 10/100/1000BASE-T	
	VGA video (rear panel) for external monitor	
	eSATA (rear panel)	
Display characteristics	LED backlit touch screen display, 132 x 99 mm (165 mm diagonal), 1024 × 768 pixels	
Software driver for third-part	IVI-COM driver	
applications	IVI-C driver	
Instrument control / data transfer		
GPIB through USB B device port (requires external adapter TEK-USB-488)	Remote control and data transfer (conforms to IEEE-Std 488.1, compatible with IEEE-Std 488.2 and SCPI-1999.0)	
Ethernet	Remote control and data transfer (conforms to IEEE-Std 802.3)	
LAN eXtensions for Instrumentation (LXI)	Class LXI Class C Version 1.4	

Physical characteristics

Dim	nensions	
	Height	153.6 mm (6.05 in)
	Width	460.5 mm (18.13 in)
	Depth	603 mm (23.76 in)
We	ight	
	Net weight without packaging	37.0 lb (16.8 kg)
		38.56 lb (17.49 kg) (AWG70001B with option AC)
	Net weight with packaging	49.4 lb (22.4 kg)
		50.96 lb (23.12 kg) (AWG70001B with option AC)
Cod	bling clearance	
	Тор	0 in
	Bottom	0 in
	Left side	50 mm (2 in)
	Right side	50 mm (2 in)
	Rear	0 in

EMC, environment, and safety

Те	mperature		
	Operating	0 °C to +50 °C (+32 °F to +122 °F)	
	Non-operating	-20 °C to +60 °C (-4 °F to +140 °F)	
Hu	midity		
	Operating	5% to 90% relative humidity (% RH) at up to 30 $^\circ\mathrm{C}$	
		5% to 45% relative humidity above 30 $^\circ\text{C}$ up to 50 $^\circ\text{C}$	
		Non-condensing	
	Non-operating	5% to 90% relative humidity (% RH) at up to 30 $^\circ\text{C}$	
		5% to 45% relative humidity above 30 $^{\circ}\text{C}$ up to 60 $^{\circ}\text{C}$	
		Non-condensing	
Alt	itude		
	Operating	Up to 3,000 meters (9,843 feet)	
		Derate maximum operating temperature by 1 °C per 300 meters a	above 1500 meters.
	Non-operating	Up to 12,000 meters (39,370 feet)	
Vil	oration		
	Operating	Sine: 0.33 mm p-p (0.013 in p-p) constant displacement, 5 to 55 H $$	łz
		Random: 0.27 GRMS from 5 to 500 Hz, 10 minutes per axis	
	Nonoperating	Random: 2.28 GRMS from 5 to 500 Hz, 10 minutes per axis	
Me	chanical shock		
	Operating	Half-sine mechanical shocks, 30 g peak, 11 ms duration, 3 drops	in each direction of each axis
Re	gulatory		
	Safety	UL61010-1, CAN/CSA-22.2, No.61010-1, EN61010-1, IEC61010-1	
	Emissions	EN55011 (Class A), IEC61000-3-2, IEC61000-3-3	
	Immunity	IEC61326, IEC61000-4-2/3/4/5/6/8/11	
	Regional certifications	Europe	Australia/New Zealand
		EN61326	AS/NZS 2064

Ordering information

Models

AWG70001B	10 bit, 2 GSamples record length, 1-channel arbitrary waveform generator
AWG70000-150	50 Gs/s Sample Rate
AWG70000-MEM	Waveform record length expansion to 32 G
AWG70001B AC	Adds a single-ended AC coupled output connector with additional amplification and attenuation
AWG70001B SEQ	Adds Sequencing
AWG70001B STRID	Adds Streaming ID (requires AWG70001B SEQ)
AWG70002B	10 bit, 2 GSamples record length, 2-channel arbitrary waveform generator.
AWG70000-208	8 Gs/s Sample Rate
AWG70000-216	16 Gs/s Sample Rate
AWG70000-225	25 Gs/s Sample Rate
AWG70000-MEM	Waveform record length expansion to 16 G per channel
AWG70002B SEQ	Adds Sequencing
AWG70002B STRID	Adds Streaming ID (requires AWG70002B SEQ)

Instrument options

Power plug options

Opt. A0	North America power plug (115 V, 60 Hz)
Opt. A1	Universal Euro power plug (220 V, 50 Hz)
Opt. A2	United Kingdom power plug (240 V, 50 Hz)
Opt. A3	Australia power plug (240 V, 50 Hz)
Opt. A4	North America power plug (240 V, 50 Hz)
Opt. A5	Switzerland power plug (220 V, 50 Hz)
Opt. A6	Japan power plug (100 V, 50/60 Hz)
Opt. A10	China power plug (50 Hz)
Opt. A11	India power plug (50 Hz)
Opt. A12	Brazil power plug (60 Hz)
Opt. A99	No power cord

Language options

Opt. L0	English manual
Opt. L5	Japanese manual
Opt. L7	Simplified Chinese manual
Opt. L8	Traditional Chinese manual
Opt. L10	Russian manual
Opt. L99	No manual

Service options

Opt. C3	Calibration Service 3 Years
Opt. C5	Calibration Service 5 Years
Opt. D1	Calibration Data Report
Opt. D3	Calibration Data Report 3 Years (with Opt. C3)
Opt. D5	Calibration Data Report 5 Years (with Opt. C5)
Opt. G3	Complete Care 3 Years (includes loaner, scheduled calibration, and more)
Opt. G5	Complete Care 5 Years (includes loaner, scheduled calibration, and more)
Opt. R3	Repair Service 3 Years (including warranty)
Opt. R5	Repair Service 5 Years (including warranty)
CA1	Single calibration or functional verification
R5DW	Repair service coverage 5 years
R2PW	Repair service coverage 2 years post warranty
R1PW	Repair service coverage 1 year post warranty

Standard accessories

131-8689-xx	Analog output Planar Crown 7005A-1 SMA female adapters (preinstalled)
	AWG70001B: two (three with Option AC)
	AWG70002B: four
015-1022-xx	One 50 Ω SMA terminator per channel
119-7054-xx	USB mouse
119-7275-xx	Compact USB keyboard
_	Installation and safety manual (Specify language option at time of order.)
_	Certificate of calibration
_	Power cord (Specify power cord option at time of order.)

Recommended accessories

Recommended accessories

Item	Description	Part number	
Synchronization Hub	Enables fast synchronization of multiple AWG70000 series instruments	AWGSYNC01 Synchronization Hub	
GPIB to USB Adapter	Enables GPIB control through USB B port	TEK-USB-488	
Rack mount kit	Rack mount kit for AWG70000 Series	AWGRACK	
MDC4500-4B	DC amplifier for MIPI applications	MDC4500-4B	
Baluns	200 kHz - 17 GHz	Picosecond Pulse Labs 5315A	
	300 kHz - 26.5 GHz	Marki BAL-0026	
	5 MHz - 20 GHz	Hyperlabs HL9402	
Bias Ts	10 kHz - 50 GHz	Picosecond Pulse Labs 5542	
	200 kHz - 12 GHz	Mini-Circuits ZX85-12G-S+	
Power Splitters	1.5 kHz - 18 GHz	Mini-Circuits ZX10-2-183-S+	
	DC-18 GHz	Aeroflex/Weinschel 1515	
Amplifiers	2.5 kHz - 10 GHz, 26 dB gain	Picosecond Pulse Labs 5866	
	25 kHz - 45 GHz, 16 dB gain	Picosecond Pulse Labs 5882	
	0.01 - 20 GHz, 30 dB gain	RF-Lambda RAMP00G20GA	
Adapter	SMB female to SMA female	Mouser 565-72979	
Programmer manual	Programming commands, English only	077-1452-xx (Visit the Tektronix website)	

Product upgrades

The following instrument upgrades are available post sales.

See the Plug-ins section for a list of software waveform plug-ins available post sales.

AWG70001B

AWG701BUP AC	Adds a single-ended AC coupled output connector with additional amplification and attenuation (factory upgrade only)
AWG701BUP SSD	Replacement / additional Solid State Disc Drive
AWG701BUP MEM	Increases waveform record length to 32 G
AWG701BUP SEQ	Adds Sequencing
AWG701BUP STRID	Adds Streaming ID
AWG70002B	
AWG702BUP SSD	Replacement / additional Solid State Disc Drive
AWG702BUP MEM	Increases waveform record length to 16 G per channel
AWG702BUP 0816	Increases sampling rate from 8 GS/s to 16 GS/s
AWG702BUP 0825	Increases sampling rate from 8 GS/s to 25 GS/s
AWG702BUP 1625	Increases sampling rate from 16 GS/s to 25 GS/s
AWG702BU SEQ	Adds Sequencing
AWG702BU STRID	Adds Streaming ID

Plug-ins

Plug-ins increase the capabilities of the arbitrary waveform generators. Various plug-ins are available providing unique types of waveforms or additional compensation. Each plug-in has its own installation file which installs seamlessly into the generators. After installation, it simply becomes a new menu selection. No other configuration is necessary.

Plug-in	Description	Nomenclature	Licensed enhancements
Multitone & Chirp plug-in	Create chirps, notches, and tones	MTONENL-SS01 MTONEFL-SS01	
PreCompensation plug-in	Create correction coefficients that can be applied on waveforms to get flat frequency and linear phase response	PRECOMNL-SS01 PRECOMFL-SS01	
High Speed Serial plug-in	Create pre-distorted waveforms to test a device's conformance to standards	HSSNL-SS01 HSSFL-SS01 HSSPACKNL-SS01 HSSPACKFL-SS01	S-Parameters and Intersymbol Interference unlocked with S-Parameters plug-in license Spread Spectrum Clocking unlocked with Spread Spectrum Clocking plug-in license (Licensed enhancements are included with HSSPACK)
RF Generic plug-in	Create digitally modulated signals with multiple carrier groups	RFGENNL-SS01 RFGENFL-SS01	S-Parameters unlocked with S- Parameters plug-in license
Optical plug-in	Create waveforms with complex modulation schemes for optical testing	OPTICALNL-SS01 OPTICALFL-SS01	S-Parameters unlocked with S- Parameters plug-in license Spread Spectrum Clocking unlocked with Spread Spectrum Clocking plug-in license
OFDM plug-in	Create Single or Multiple OFDM based Frames with one or more bursts	OFDMNL-SS01 OFDMFL-SS01	S-Parameters unlocked with S- Parameters plug-in license

Plug-in	Description	Nomenclature	Licensed enhancements
RADAR plug-in	Create RADAR pulsed waveforms with various modulations and impairments	RADARNL-SS01 RADARFL-SS01	S-Parameters unlocked with S- Parameters plug-in license
	RADAR and Environment waveform creation plug-ins packaged together	RDRPACK1NL-SS01 RDRPACK1FL-SS01	
	RADAR, Environment, and OFDM waveform creation plug-ins packaged together	RDRPACK2NL-SS01 RDRPACK2FL-SS01	
Environment plug-in	Create real world scenarios for commercial, electronic warfare, and simulations for monitoring and receiver testing	ENVNL-SS01 ENVFL-SS01	
Spread Spectrum Clocking plug-in	Adds SSC capability to the High Speed Serial and Optical plug-ins	SSCFLNL-SS01 SSCFLFL-SS01	
S-Parameters plug-in	Adds S-Parameter capability to the RF Generic, High Speed Serial, Optical, OFDM, and RADAR plug-ins	SPARANL-SS01 SPARAFL-SS01	

Plug-ins require the purchase of a license before they are fully functional.

There are two types of licenses available for each plug-in: node-locked (NL) and floating (FL).

- Node Locked Licenses (NL) provide your own copy of the application on your instrument and are permanently assigned to a product model/serial number.
- Floating Licenses (FL) can be moved between product models.

Warranty

One-year parts and labor.

(SRI) (SRI)

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

ASEAN / Australasia (65) 6356 3900 Belgium 00800 2255 4835* Central East Europe and the Baltics +41 52 675 3777 Finland +41 52 675 3777 Hong Kong 400 820 5835 Japan 81 (3) 6714 3086 Middle East, Asia, and North Africa +41 52 675 3777 People's Republic of China 400 820 5835 Republic of Korea +822 6917 5084, 822 6917 5080 Spain 00800 2255 4835* Taiwan 886 (2) 2656 6688 Austria 00800 2255 4835* Brazii +55 (11) 3759 7627 Central Europe & Greece +41 52 675 3777 France 00800 2255 4835* India 000 800 650 1835 Luxembourg +41 52 675 3777 The Netherlands 00800 2255 4835* Poland +41 52 675 3777 Russia & CIS +7 (495) 6647564 Sweden 00800 2255 4835* United Kingdom & Ireland 00800 2255 4835* Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Canada 1 800 833 9200 Denmark +45 80 88 1401 Germany 00800 2255 4835* Italy 00800 2255 4835* Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Norway 800 16098 Portugal 80 08 12370 South Africa +41 52 675 3777 Switzerland 00800 2255 4835* USA 1 800 833 9200

* European toll-free number. If not accessible, call: +41 52 675 3777

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com.

Copyright [©] Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

15 Feb 2019 76W-61412-0

ES)

www.tek.com

Tektronix[®]